На правах рукописи

Кутихина Екатерина Анатольевна

КОМПОЗИТНЫЕ СОРБЕНТЫ НА ОСНОВЕ ЦЕНОСФЕР ЭНЕРГЕТИЧЕСКИХ ЗОЛ: СИНТЕЗ, СТРОЕНИЕ И СОРБЦИОННЫЕ СВОЙСТВА В ОТНОШЕНИИ Cs⁺, Sr²⁺ и Nd³⁺

02.00.04 – физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Красноярск – 2021

Работа выполнена в Институте химии и химической технологии Сибирского отделения Российской академии наук – обособленном подразделении Федерального государственного бюджетного научного учреждения "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук".

Научный руководитель:	Верещагина Татьяна Александровна				
	доктор химических наук, старший научный сотрудник				
Официальные оппоненты:	Ханхасаева Сэсэгма Цыреторовна доктор химических наук, профессор, ведущий научный сотрудник лаборатории инженерной экологии, ФГБУН Байкальский институт природопользования Сибирского отделения Российской академии наук				
	Лосев Владимир Николаевич доктор химических наук, профессор кафедры композиционных материалов и физико-химии металлургических процессов Института цветных металлов и материаловедения, ФГАОУ ВО «Сибирский федеральный университет»				
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова»				

Защита состоится « 20 » апреля 2021 г. в 10:00 часов на заседании диссертационного совета Д 003.075.05, созданного на базе Федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук» по адресу: 660036, г. Красноярск, Академгородок, 50, стр. 24, конференц-зал ИХХТ СО РАН (e-mail: dissovet@icct.ru).

С диссертацией можно ознакомиться в библиотеке и на сайте Института химии и химической технологии СО РАН, адрес сайта <u>http://www.icct.ru</u>.

Автореферат разослан « » февраля 2021 г.

Ученый секретарь диссертационного совета Д 003.075.05, доктор химических наук

Top

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Разработка эффективных сорбционных материалов для извлечения радионуклидов из жидких радиоактивных отходов (РАО) актуальна в связи с решения радиоэкологических проблем, важностью вызванных накоплением распространением радиоактивных загрязнений в окружающей среде в результате деятельности радиохимических и атомных предприятий. Для извлечения радионуклидов из водных сред широко применяются различные сорбенты, включая синтетические органические ионообменники, композитные гибридные и неорганические ионообменные материалы. Неорганические сорбенты выгодно отличаются от органических большей селективностью, лучшими физико-химическими характеристиками, а также термической и радиационной устойчивостью, что делает их более пригодными для применения в сфере обращения с жидкими РАО. К тому же они обладают дополнительным преимуществом по сравнению с органическими смолами, таким как способность фиксировать радионуклиды в стабильной твердой матрице (кристаллическая или минералоподобная керамика, стеклокерамические композиты) на основе процессов «сорбция/кристаллизация».

радиоактивных PAO особую озабоченность Среди компонентов вызывают тепловыделяющие продукты деления ¹³⁷Cs и ⁹⁰Sr (T_{1/2} ~30 лет) и долгоживущие изотопы актиноидов, например, америций (²⁴¹Am, ²⁴³Am) и кюрий (²⁴⁵Cm) (T_{1/2} ~10²-10⁴ лет). В качестве химически, термически и радиационно устойчивых матриц изоляции ¹³⁷Cs и рассматриваются каркасные алюмосиликаты, подобные по составу и структуре полевым шпатам и фельдшпатоидам. В перечень устойчивых минералоподобных фаз для иммобилизации актиноидов входят Zr-содержащие фазы, включая цирконолит ZrTi₂O₇, NaZr₂(PO₄)₃ (NZP), циркон и др. В качестве сорбционно-активных прекурсоров алюмосиликатных фаз исследуются алюмосиликатные соединения (цеолиты, глины и др.), а Zr-содержащих фаз – мезопористые цирконотитанаты и цирконосиликаты, циркономолибдаты, гибридные цирконофосфаты.

Для фиксации радионуклидов ¹³⁷Cs и ⁹⁰Sr в структуре кристаллических алюмосиликатов перспективным представляется применение алюмосиликатных микросфер летучих энергетических зол (ценосфер). За счет сферического строения и близкого к природным алюмосиликатам состава (SiO₂/Al₂O₃) ценосферы могут выступать в качестве прекурсоров микросферических сорбентов, цеолитов и алюмосиликатных фаз – концентраторов катионов целочных (Na⁺, ¹³⁷Cs⁺) и целочноземельных (⁹⁰Sr²⁺) металлов. Для фиксации PAO, включающих также актиноиды, состав сорбента-прекурсора на основе ценосфер может быть модифицирован введением сорбционно-активных добавок, ориентированных на формирование соответствующих кристаллических фаз, где ценосферы могут выступать в качестве носителей в системе «ядро-оболочка».

Таким образом, разработка сорбционных способов включения радионуклидов жидких отходов в матричные материалы с минералоподобной структурой с использованием

3

микросферических компонентов летучих зол тепловой энергетики является весьма актуальной, поскольку направлена на ресурсосбережение и решение экологических проблем как угольной, так и ядерной энергетик.

<u>Степень разработанности темы.</u> Сорбционные процессы широко используются для очистки растворов от радионуклидов. Однако, композитные Zr-содержащие сорбенты, полученные на основе ценосфер летучих зол угольных электростанций, позволяющие реализовать процесс перевода водорастворимых катионов радиоактивных металлов в нерастворимые минералоподобные формы путём высокотемпературной твердофазной кристаллизации сорбента, практически не изучены. В мире известны единичные работы по созданию сорбентов на основе ценосфер, в которых ценосферы используются лишь в качестве носителей активных компонентов.

<u>Цель работы</u> – получение сорбционно-активных композиций заданного состава и строения на основе Zr-содержащих соединений (циркономолибдаты, цирконосиликаты, диоксид циркония) и узких фракций ценосфер летучих энергетических зол для эффективного извлечения из водных сред и иммобилизации в минералоподобной форме катионов Cs^+ , Sr^{2+} и Nd³⁺ как имитаторов ¹³⁷Cs, ⁹⁰Sr и An (III).

Для достижения поставленной цели решались следующие задачи:

- 1. Разработка методов синтеза сорбционно-активных композиций разного состава и строения на основе Zr-содержащих соединений (циркономолибдаты, цирконосиликаты, диоксид циркония) и узких фракций ценосфер.
- 2. Изучение состава и строения композиций методами РФА, РСА, РЭМ-ЭДС, СТА.
- 3. Изучение сорбционных свойств композиций в отношении катионов Cs^+ , Sr^{2+} и Nd^{3+} .
- 4. Изучение возможности включения сорбированных катионов Cs⁺, Sr²⁺ и/или Nd³⁺ в структуру прогнозируемых фаз путем фазового превращения композитного сорбента.

Научная новизна. Впервые исследовано влияние состава реакционных сред и условий синтеза на получение композиций различного дизайна на основе узких фракций ценосфер и Zrсодержащих соединений, включая циркономолибдаты разного состава, микропористые цирконосиликаты и диоксид циркония, обладающих сорбционными свойствами в отношении катионов Cs⁺, Sr²⁺ и Nd³⁺. Впервые получены микросферические композиции со структурой «ядро-оболочка», содержащие сорбционно-активных компонентов В качестве циркономолибдаты и микропористые цирконосиликаты различного состава, а также композитные цеолиты с топологией каркаса типа анальцим, содержащие включения аморфного ZrO₂, для которых изучены сорбционные свойства в отношении катионов Cs⁺, Sr²⁺ и Nd³⁺ и определены такие параметры сорбции, как коэффициент распределения (K_D ~10⁴-10⁵ мл/г) и предельная сорбционная ёмкость. Определены условия фазового превращения Nd³⁺-формы циркономолибдатного сорбента в полифазную систему с включением катиона Nd³⁺ в структуру каркасного циркономолибдата $Nd_2Zr_3(MoO_4)_9$ и $Nd^{3+}/Sr^{2+}/Cs^+$ -обменных форм композитного

4

анальцима в цирконоалюмосиликатную керамику на основе нефелина и тетрагонального диоксида циркония.

<u>Практическая значимость.</u> Полученные результаты могут быть использованы в качестве исходных данных для разработки высокоэффективных ($K_D \sim 10^4 - 10^5$ мл/г) композитных сорбентов на основе узких фракций ценосфер летучих энергетических зол для извлечения ¹³⁷Cs, ⁹⁰Sr и актиноидов из жидких РАО и их иммобилизации в минералоподобной форме.

<u>Методология и методы исследования.</u> Методология включала в себя получение композитных сорбентов методом гидротермального синтеза и исследование их сорбционных свойств в статических условиях методом переменных концентраций. Результаты сорбции были аппроксимированы моделью Ленгмюра. Все полученные образцы были охарактеризованы с помощью комплекса физико-химических методов на современном оборудовании.

Положения, выносимые на защиту:

- 1. Влияние состава реакционных сред и условий синтеза на получение сорбционноактивных композиций заданного состава и строения на основе Zr-содержащих соединений (циркономолибдаты, цирконосиликаты, диоксид циркония) и узких фракций ценосфер.
- 2. Влияние состава, структуры и содержания Zr-содержащих компонентов композитных сорбентов на их сорбционные свойства в отношении Cs⁺, Sr²⁺ и Nd³⁺.
- 3. Фазовое превращение Nd³⁺-обменной формы композитного циркономолибдатного сорбента при умеренных температурах с включением Nd³⁺ в структуру каркасного циркономолибдата Nd₂Zr₃(MoO₄)₉.
- 4. Фазовое превращение Nd³⁺/Sr²⁺/Cs⁺-обменных форм композиции ZrO₂-анальцим с образованием цирконоалюмосиликатной керамики.

<u>Степень достоверности и апробация результатов.</u> Достоверность полученных результатов подтверждается их воспроизводимостью и использованием в работе современных физико-химических методов анализа. Полученные экспериментальные результаты согласуются с литературными данными.

Основные материалы диссертации докладывались и обсуждались на международных, всероссийских, региональных конференциях: Конференция молодых ученых КНЦ СО РАН, секция «Химия» (г. Красноярск, 2016 г.), XIX Конференция молодых ученых КНЦ СО РАН (г. Красноярск, 2016 г.), VII Молодежная школа-конференция ФИЦ КНЦ СО РАН «Наука, промышленность, экология» (2017 г.), XIX Международная практическая конференция студентов и молодых ученых «Химия и химическая технология в XXI веке» (г. Томск, 2018 г.), 8-ая Всероссийская цеолитная конференция «Цеолиты и мезопористые материалы: достижения и перспективы» (г. Уфа, 2018 г.), Конференция молодых ученых КНЦ СО РАН, секция «Химия» (г. Красноярск, 2019 г.), XXI Менделеевский съезд по общей и прикладной химии, (г. СанктПетербург, 2019 г.), Энергетика XXI века: Устойчивое развитие и интеллектуальное управление (г. Иркутск, 2020 г.), V Всероссийская молодежная конференция (г. Уфа, 2020 г.).

Работа выполнялась в соответствии с планами НИР Института химии и химической технологии СО РАН по проектам № V.45.3.1 «Физико-химические основы получения функциональных материалов, включая микросферические, композитные, наноструктурированные системы, с прогнозируемыми свойствами» (2013–2016 г.г.), № V.45.3.3 «Формирование новых функциональных микросферических и композитных материалов с заданными свойствами» (2016–2020 г.г.) и проекту РФФИ № 19-03-00448 «Гидротермальный синтез каркасных алюмосиликатов на основе ценосфер как способ иммобилизации радионуклидов ¹³⁷Сs и ⁹⁰Sr в минералоподобной форме» (2019–2021 г.г.).

<u>Личный вклад автора</u> состоит в проведении основного объёма описанных в работе экспериментальных и теоретических исследований, анализе, обработке и интерпретации полученных данных, подготовке и оформлении публикаций. Постановка задач исследования, определения способов их решения и обсуждение всех полученных результатов происходило при непосредственном участии автора.

<u>Публикации.</u> По теме диссертации опубликованы 7 статей, индексируемые в системе цитирования Web of Science и рекомендованные ВАК, и 10 тезисов докладов.

<u>Объём и структура диссертации.</u> Диссертационная работа изложена на 125 страницах машинописного текста и состоит из введения, 3-х глав, выводов, списка цитируемой литературы. Работа содержит 7 таблиц и 47 рисунков. Список литературы включает 182 ссылки на работы отечественных и зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении изложена актуальность темы диссертации, сформулированы цель и основные задачи работы, описаны новизна, значимость работы, положения, выносимые на защиту, личный вклад автора, апробация работы и дано описание структуры диссертации.

В первой главе представлен анализ литературы, в котором рассмотрены основные типы сорбентов, применяемых в качестве прекурсоров минералоподобных форм иммобилизации РАО. Проанализированы положительные и отрицательные стороны способов их получения.

Изучены характеристики неорганических ионообменных материалов, используемых для извлечения цезия, стронция и актиноидов для их дальнейшей локализации в минералоподобной форме.

Установлено, что в настоящее время не существует технологических процессов, позволяющих производить комплексную одностадийную очистку ЖРО с возможностью дальнейшего долговременного содержания продуктов очистки в стабильном состоянии.

Рассмотрено выделение алюмосиликатных микросфер летучих энергетических зол от сжигания угля и их использование в сорбционной схеме иммобилизации компонентов жидких

6

радиоактивных отходов. На основании литературного обзора поставлены основные задачи диссертационной работы.

Во **второй главе** изложены методические вопросы работы. В частности, приведены основные характеристики использованных узких фракций ценосфер и методика получения носителей на их основе. Приведены методики синтеза композитных сорбентов, а также сведения о приборах и физико-химических методах (СЭМ, EDX-картирование, РФА, СТА, удельная поверхность и пористость, ААС и ИСП-МС и др.), использованных для исследования полученных образцов, а также приведены реактивы и материалы, необходимые для синтеза сорбентов.

Физические характеристики, макрокомпонентный и фазовый состав узких фракций ценосфер (далее – SiO₂-Al₂O₃) представлены в таблице 1. На рисунке 1 представлены микрофотографии узких фракций ценосфер.

Таблица 1 – Макрокомпонентный, фазовый состав (мас. %) и физические характеристики узких фракций ценосфер

	Характеристики узких					
Параметры	фракций					
	Nº 1	Nº 2	Nº 3	Nº 4		
Химический состав, мас.%						
SiO ₂	67,6	67,52	65,9	59,90		
Al ₂ O ₃	21,0	21,27	26,51	34,90		
Fe ₂ O ₃	3,0	3,46	2,71	1,10		
SiO ₂ /Al ₂ O ₃ (мас.%)	3,2	3,2	2,5	1,7		
SiO ₂ /Al ₂ O ₃ (мас.%) в стекле	3,1	3,0	2,7	5,4		
Фазовый состав, мас. %						
Стеклофаза	95,4	91,5	91,3	63,5		
Муллит	0,8	1,5	5,3	34,7		
Кварц	3,4	6,7	3,1	1,5		
Физические характеристики						
Насыпная плотность, г/см ³	0,38	0,38	0,35	0,42		
Средний диаметр, мкм	146	144	178	76		
Кажущаяся толщина оболочки, мкм	Н.О.	6,8	7,8	4,1		

*н.о. – не определяли

Сорбцию катионов Cs⁺, Sr²⁺ и Nd³⁺ проводили в равновесных условиях при комнатной температуре путём контактирования сорбента с раствором CsNO₃, Sr(NO₃)₂ и Nd(NO₃)₃ заданной концентрации в интервале 0,5–50 мг/л. Равновесные фазы разделяли фильтрованием, фильтрат и исходный раствор анализировали на содержание катионов металлов.

Рисунок 1 – РЭМ снимки узких фракций ценосфер: а – образец № 1; б – образец № 2; в – образец № 3; г – образец № 4

Равновесную сорбционную ёмкость (A_p, мг/г) рассчитывали по разности концентраций в исходном и равновесном растворах:

$$A_{p} = \frac{(C_{0} - C_{p}) \cdot V}{m},$$

где C₀ – исходная концентрация Meⁿ⁺ в растворе, мг/л; C_P – равновесная концентрация Meⁿ⁺ в растворе, мг/л; V – объём исходного раствора, л; m – масса навески сорбента, г.

Результаты представляли в виде зависимости $A_p = f(C_p)$, апроксимированной уравнением Ленгмюра:

$$A_{p} = a_{m} \frac{b \cdot C_{p}}{1 + b \cdot C_{p}},$$

где а_m – ёмкость сорбента при насыщении, мг/г; b – константа уравнения Ленгмюра, л/мг.

Эффективность сорбции (E, %) рассчитывали по формуле E = $(1 - C_P/C_0) \cdot 100\%$, которую также оценивали на основании величины коэффициента распределения (K_D = A_p/C_p, мл/г), рассчитанной для линейной части изотермы при C_p < 1 мг/л.

В третьей главе приведены результаты исследования полученных композитных сорбентов.

Циркономолибдатные сорбенты на основе композиций слоистых циркономолибдатов со связующим SiO₂

Были синтезированы неорганическая и гибридная композиции на основе слоистого циркономолибдата¹ со связующим SiO₂ и нанесением на поверхность частиц неорганической

¹ Vereshchagina, T.A. A novel layered zirconium molybdate as a precursor to a ceramic zirconomolybdate host for lanthanide bearing radioactive waste / T.A. Vereshchagina [et al.] // Journal of Materials Chemistry.– 2011.– Vol. 21.– P. 12001–12007.

композиции фосфорсодержащего компонента бис-(2,4,4-триметилпентил)-фосфината натрия. Сорбционные свойства полученных композиций были исследованы в отношении катионов Nd³⁺.

По экспериментальным данным построены изотермы сорбции, которые были аппроксимированы уравнением Ленгмюра (рисунок 2 а, б). Максимальное значение сорбционной ёмкости порядка 30 мг/г наблюдается для неорганической композиции 15% SiO₂/NZM и 50 мг/г – для гибридной композиции 10% Na⁺-C-272/SiO₂/NZM. Установлено, что обе композиции позволяют извлекать катионы Nd³⁺ из растворов азотнокислого неодима с коэффициентом распределения (K_D) порядка 10⁴ мл/г.

Рисунок 2 – Изотермы сорбции Nd³⁺ на композитных циркономолибдатных сорбентах: a – 15% SiO₂/NZM; б – 10% Na⁺-C-272/SiO₂/NZM (точки – эксперимент, линии – модель Ленгмюра)

Изучена возможность включения сорбированной формы Nd^{3+} в целевую фазу структурного типа $Nd_2Zr_3(MoO_4)_9$ (структурный аналог минерала коснарит или NZP фазы) путём твердофазного превращения сорбента при 650 °C. Показано, что обе композиции с сорбированными катионами Nd^{3+} претерпевают твердофазную кристаллизацию с образованием полифазной системы, в которой содержание целевой фазы $Nd_2Zr_3(MoO_4)_9$ составляет около 30% (таблица 2).

Таблица 2 – Фазовый состав (% мас.) продуктов твердофазной кристаллизации прекурсоров на основе неорганической и гибридной композиций

Тип фазы	Nd ³⁺ /10% Na ⁺ -C-272/SiO ₂ /NZM*	Nd ³⁺ /15% SiO ₂ /NZM
$Zr(MoO_4)_2$	35,4	40,2
ZrO ₂	24,3	24,5
Nd ₂ Zr ₃ (MoO ₄) ₉	28,3	35,3
Nd _{0.67} MoO ₄	4,0	_
$M_3Zr_2Si_2PO_{12}$	8,0	—

*без учёта стеклофазы, неидентифицированных примесей и возможных замещений Zr/Nd и Mo/P/Si.

Микросферические композитные сорбенты с активным компонентом на основе мезопористого циркономолибдата

Синтез микросферической композиции на основе мезопористого циркономолибдата и ценосфер (образец 4, таблица 1) был осуществлен в гидротермальных условиях при 150 °C из реакционной среды, содержащей ценосферы, ZrOCl₂ и (NH₄)₆Mo₇O₂₄ (образец mZrO₂-MoO₃/(SiO₂-Al₂O₃, Mo/Zr ~ 0,4). Часть микросферического продукта синтеза была дополнительно обработана в гидротермальных условиях молибдатом натрия для повышения отношения Mo/Zr в продукте (образец Mo-mZrO₂-MoO₃/(SiO₂-Al₂O₃), Mo/Zr ~ 4–30). На рисунке 3 приведена структура полученных продуктов, а в таблице 3 – их текстурные и сорбционные характеристики.

Рисунок 3 – РЭМ снимки композиции mZrO₂-MoO₃/(SiO₂-Al₂O₃) (a, б) и Mo-mZrO₂-MoO₃/(SiO₂-Al₂O₃) (б, в)

Анализ пористой структуры и состава первого продукта показал, что нанесённый циркономолибдат представляет собой микромезопористый материал с удельной поверхностью около 200 м²/г и размером пор в интервале 10–40 Å с $D_{max} \sim 15$ Å. Величина удельной поверхности этой композиции составила 15 м²/г, что соответствует степени нанесения циркономолибдата около 8 %.

Как видно на РЭМ снимках (рисунок 3 а, б), в микросферическом продукте первой стадии синтеза нанесенный компонент локализуется как на поверхности, так и в порах носителя. На поверхности продукта второй стадии присутствуют палочковидные образования на основе кристаллической фазы, неидентифицируемой методом РФА, которая по данным РЭМ-ЭДС характеризуется повышенным содержанием молибдена (Mo/Zr > 30) и, скорее всего, является разновидностью микропористого гексагонального молибдата, образующегося в кислой среде из молибдата натрия. Основная часть поверхности глобул покрыта плёнкой молибдата циркония с Mo/Zr ~ 4–8, в которой Zr и Мо распределены неравномерно.

Из данных, приведенных в таблице 3, видно, что индивидуальный циркономолибдат характеризуется относительно невысокой сорбционной ёмкостью в отношении Nd³⁺ (около 10 мг/г Nd³⁺), что может быть связано с низким вхождением в структуру mZrO₂-MoO₃ атомов молибдена, являющихся источником кислых сорбционно-активных –OH групп, и/или низкой доступностью сорбционных центров в объёмном материале. Тонкослойное распределение активного компонента при степени нанесения около 8 % способствует повышению на порядок его удельной ёмкости.

Таблица 3 – Текстурные и сорбционные характеристики в отношении катионов Nd³⁺ дисперсного циркономолибдата и микросферических композиций

No	Образец	(Mo/Zr) _{мол}	$S_{yд}$, м ² /г	а _m , мг/г	К _D , мл/г	Е, %
1	mZrO ₂ -MoO ₃	0,4	200	10	$0,7 \cdot 10^4$	89
2	8% mZrO ₂ -MoO ₃ /(SiO ₂ -Al ₂ O ₃)	0,4	15	6/75*	$0,2.10^4$	67
3	$10\% \text{ Mo-mZrO}_2\text{-MoO}_3/(\text{SiO}_2\text{-Al}_2\text{O}_3)$	4-30	13	12/120*	$0,3.10^4$	85

* расчет на 1 г активного компонента

Увеличение соотношения Mo/Zr путём взаимодействия композиции с Na₂MoO₄ привело к ожидаемому повышению ёмкости. При этом для обоих композиций характерны коэффициенты распределения до 10⁴ мл/г.

Микросферические композитные сорбенты с активным компонентом на основе кристаллического циркономолибдата ZrMo₂O₇(OH)₂(H₂O)₂

Синтез кристаллического циркономолибдата был осуществлен в гидротермальных условиях в две стадии при относительно невысоких температурах с получением на промежуточной стадии композиции с нанесенным мезопористым диоксидом циркония. В качестве прекурсора микросферической подложки использовали узкую фракцию ценосфер (образец 2, таблица 1). На рисунке 4 а, б представлены РЭМ снимки микросферической композиции с кристаллическим циркономолибдатом.

Рисунок 4 – РЭМ снимки микросферической композиции ZrMo₂O₇(OH)₂(H₂O)₂/(SiO₂-Al₂O₃) (a), фаза ZrMo₂O₇(OH)₂(H₂O)₂ на поверхности носителя (б) и дифрактограмма композита ZrMo₂O₇(OH)₂(H₂O)₂/(SiO₂-Al₂O₃)_{стекло} (в-1) и фазы ZrMo₂O₇(OH)₂(H₂O)₂ (в-2)

Представленные данные в совокупности с результатами РФА (рисунок 4 в) свидетельствуют о формировании на поверхности носителя наноструктурированной фазы тетрагонального молибдата циркония $ZrMo_2O_7(OH)_2(H_2O)_2$ (a = 11,446 (1) Å; c = 12,490 (2) Å, состоящего из удлиненных кристаллитов толщиной 20–100 нм и длиной 100–800 нм. Для сравнения получена индивидуальная фаза молибдата циркония с толщиной кристаллитов 0,5–1 микрон и длиной 5–7 микрон.

Изучение сорбционных свойств чистого циркономолибдата $ZrMo_2O_7(OH)_2(H_2O)_2$ и микросферической композиции, содержащей данную фазу, в отношении катионов Nd^{3+} , Sr^{2+} и Cs^+ показало, что оба материала сорбируют эти катионы с повышенным сродством к Nd^{3+} и Sr^{2+} и незначительной ёмкостью в отношении Cs^+ (рисунок 5).

Рисунок 5 – Изотермы сорбции Nd³⁺, Sr²⁺ и Cs⁺ для чистой фазы ZrMo₂O₇(OH)₂(H₂O)₂ (белые точки) и композиции ZrMo₂O₇(OH)₂(H₂O)₂/(SiO₂-Al₂O₃) (черные точки): а, б, в – чистая фаза ZrMo₂O₇(OH)₂(H₂O)₂; г, д, е – композиция ZrMo₂O₇(OH)₂(H₂O)₂/(SiO₂-Al₂O₃) (точки – эксперимент, линии – модель Ленгмюра)

полученные значения величины Экспериментально сорбции удовлетворительно описываются моделью Ленгмюра с K_D , снижающимся в ряду $Nd^{3+} > Sr^{2+} > Cs^+$ (рисунок 5). Установлено также, что микросферическая композиция проявляет повышенную сорбционную способность в отношении катионов Cs⁺, Sr²⁺ и Nd³⁺ по сравнению с индивидуальной микроразмерной фазой $ZrMo_2O_7(OH)_2(H_2O)_2$, а также селективность в отношении Nd^{3+} или Sr^{2+} с К_D порядка 10⁴ и 10³ мл/г, соответственно. Очевидно, это связано с уменьшением размера сорбент-адсорбтив, кристаллов активной фазы и увеличением площади контакта способствующее усилению взаимодействия ионов с поверхностными активными группами.

Высказано предположение, что селективность может быть связана с особенностями структуры данного циркономолибдата и возможностью встраивания катионов металла в соразмерные позиции в кристаллической решетке за счет взаимодействия с ОН группами и вытеснения слабосвязанных молекул воды. При этом возможность размещения катионов в позициях решетки, занятых молекулами воды, определяется размерными эффектами, в частности, межатомными расстояниями между молекулами воды и ближайшими атомами кислорода, равными 2,679–2,808 Å. Расчётные длины связей Nd–O, Sr–O, Cs–O составляют 2,2506, 2,5801, 2,8626 Å, соответственно. Следовательно, этому критерию удовлетворяют только катионы Nd³⁺ и Sr²⁺, в то время как катион Cs⁺ в виду большего размера не способен встраиваться в кристаллическую решетку. Результаты термогравиметрических исследований фазы $ZrMo_2O_7(OH)_2(H_2O)_2$ и композиции до и после сорбции неодима подтвердили это предположение.

Микросферические цирконосиликатные сорбенты с активным компонентом на основе микропористых цирконосиликатов

Выбор микропористых цирконосиликатов в качестве сорбционно-активного компонента обусловлен высокой способностью их структур к ионному обмену и высоким сродством их слоистых и аморфных структур различного состава к ионам щелочных, щелочноземельных и тяжелых металлов ($K_D > 10^5$ для Sr²⁺, Ba²⁺, Cr³⁺, Co²⁺, Pb²⁺), в том числе в присутствии высокого солевого фона (1M NaNO₃)².

К перспективным типам цирконосиликатов относят структуры с гетерополиэдрическим каркасом состава $ZrSi_3O_9$, как например, илерит $Na_2ZrSi_3O_9 \cdot 3H_2O$ (HIL, гекс. синг., пр. гр. R32, a = 10,56 Å, c = 15,85 Å) и гейдоннеит $Na_2ZrSi_3O_9 \cdot 2H_2O$ (GAI, орторомб. синг., пр. гр. P2₁nb, a = 11,74, b = 12,97, c = 6,73 Å).

Прямой одностадийный синтез цирконосиликатных композиций с ценосферами довольно проблематичен из-за растворимости стеклофазы ценосфер в гидротермальных щелочных условиях, необходимых для синтеза цирконосиликатов. Поэтому синтез цирконосиликатных композиций проводили в две стадии. Сначала получали индивидуальные цирконосиликаты HIL и GAI в гидротермальных условиях. Нанесение индивидуальных цирконосиликатов осуществляли многократной пропиткой микросферического носителя на основе узкой фракции ценосфер (образец №3, таблица 1) суспензией цирконосиликата (фр. < 36 мкм) в этаноле с сушкой при 70 °С. Степень нанесения для обоих образцов составила около 5 мас. %.

По данным РФА илерит и гейдоннеит являются основными фазами в продуктах синтеза (рисунок 6 д). Микроструктура участков поверхности нанесённых композиций HIL/(SiO₂-Al₂O₃) и GAI/(SiO₂-Al₂O₃) представлена на рисунке 6 в, г. Чистые цирконосиликаты (рисунок 6 а, б) имеют слоистую структуру и состоят из частиц со средним размером 3-5 мкм. Соразмерность частиц цирконосиликата и открытых пор ценосфер позволила зафиксировать его на поверхности носителя (рисунок 6 в, г).

Изучение сорбционных свойств индивидуальных фаз и композиций на их основе в отношении катионов Cs^+ и Sr^{2+} , в том числе из бикомпонентных растворов, содержащих и Cs^+ , и Sr^{2+} , показали, что на чистых фазах в области выбранных исходных концентраций (0,5–50 мг/г)

²Bortun, A.I. Hydrothermal synthesis of sodium zirconium silicates and characterization of their properties / Bortun A. I. [et al.] // Chemistry of Materials.– 1997.– Vol. 9.– P. 1854–1864.

сорбция Cs^+ и Sr^{2+} из растворов протекает практически количественно с высокими значениями коэффициента распределения, превышающими 10^5 мл/г, и не достигает уровня насыщения сорбента.

Рисунок 6 – РЭМ снимки цирконосиликатных фаз и фрагментов поверхности микросферических композиций: а – илерит, б – гейдоннеит, в – HIL/(SiO₂-Al₂O₃), г – GAI/(SiO₂-Al₂O₃), д – дифрактограммы цирконосиликатных фаз: илерит (HIL) (Na₂ZrSi₃O₉·3H₂O), гейдоннеит (GAI) (Na₂ZrSi₃O₉·2H₂O)

На рисунке 7 приведены изотермы сорбции катионов Cs^+ и Sr^{2+} на композициях с нанесёнными илеритом и гейдоннеитом. Можно видеть, что для изотерм сорбции Cs^+ и Sr^{2+} на нанесённых композициях наблюдается выход кривых на плато на более низком уровне при сохранении достаточно высоких K_D (~ 10^4 – 10^5 мл/г) в области низких равновесных концентраций.

При совместном присутствии Cs^+ и Sr^{2+} для илерит-содержащих композиций наблюдается снижение сорбционной ёмкости по обоим катионам по сравнению с сорбцией из монокомпонентных растворов. В свою очередь гейдоннеит-содержащие композиции поглощают Cs^+ и Sr^{2+} примерно одинаково как из моно-, так и бикомпонентных растворов.

Рисунок 7 – Изотермы сорбции Cs⁺ (a, б) и Sr²⁺ (b, г); a, b – HIL/(SiO₂-Al₂O₃); б, г – GAI/(SiO₂-Al₂O₃) (точки – эксперимент, линии – модель Ленгмюра)

Наблюдаемое различие может быть связано с особенностями структуры цирконосиликатов и возможной конкуренцией сорбируемых катионов за одинаковые центры связывания в каркасе илерита.

Композиция ZrO₂-анальцим

Каркасные алюмосиликаты с топологией каркаса типа анальцим (ANA) являются объектом ряда исследований в связи с решением проблемы обращения с радиоактивными отходами. Композитные цеолитные материалы, содержащие включения переходных металлов, в частности циркония, представляют особый интерес, поскольку они могут функционировать, с одной стороны, как сорбенты с различными типами сорбционных центров, а с другой – как прекурсоры цирконоалюмосиликатной керамики, которая имеет потенциал использования в качестве химически устойчивой формы фиксации радиоактивных отходов, получаемой в результате фазовой трансформации обменных форм цеолитного материала.

Особый интерес представляет разработка методов получения материалов на основе цеолита с топологией каркаса типа анальцим (ANA), который зарекомендовал себя как эффективный сорбент переходных и трансурановых металлов, а также широко исследуется в мире как матрица для иммобилизации радионуклидов цезия.

В связи с этим в работе была изучена возможность синтеза в гидротермальных условиях анальцима двух модификаций – монофазного анальцима без примесей других цеолитов, а также анальцима, содержащего цирконий.

Синтез анальцима и композиции ZrO₂-анальцим проводили в процессе гидротермальной обработки при 150 °C и аутогенном давлении системы Na₂O-H₂O-(SiO₂-Al₂O₃)_{стекло} мольного

состава 1.0 SiO₂/0.18 Al₂O₃/0.89 Na₂O/65 H₂O и системы Na₂O-ZrO₂-H₂O-(SiO₂-Al₂O₃)_{стекло} состава 1,0 SiO₂/0,18 Al₂O₃/0,89 Na₂O/0,15 ZrO₂/65 H₂O при отношении жидкое (ж) / твёрдое (т) = 5 / 1 (по объёму), полученной путём добавления ценосфер с $(SiO_2/Al_2O_3)_{cтекло} = 3,1$ (образец 1, таблица 1) и аммонийно-цитратного комплекса циркония (IV) к 1–1,5M NaOH. Все продукты рассеяли на ситах с размером ячеек 0,036 мм. Для удаления свободного диоксида циркония фракцию < 0,036 мм обрабатывали ультразвуковым источником.

В качестве варьируемого параметра изучали влияние режима и скорости перемешивания на свойства полученного продукта в автоклавах двух типов. Использовали два режима постоянного перемешивания: в вертикальной плоскости, со скоростью 30 об/мин (автоклав 1, образцы ANA-30 (A1), Zr-ANA-30 (A1)) и в горизонтальной плоскости со скоростью 50 и 200 об/мин (автоклав 2, образцы ANA-50 (A2); Zr-ANA-50 (A2), Zr-ANA-200 (A2)), а также перемешивание в переменном режиме со скоростью 30 об/мин (автоклав 2, образец Zr-ANA-30 (A2)). Как видно на РЭМ снимках (рисунок 8), в продуктах обоих синтезов присутствуют кристаллы с икоситетраэдрическим габитусом, характерным для цеолита с топологией каркаса типа анальцим. В системе Na₂O-H₂O-(SiO₂-Al₂O₃)_{стекло} при вертикальном перемешивании продукты представляют собой фрагменты стеклофазы с прикрепленными крупными (10–40 мкм) кристаллами анальцима (рисунок 8 а), а при горизонтальном перемешивании – полые микросферы, стенка которых состоит из кристаллов анальцима, размером 2–7 мкм (рисунок 8 б).

Рисунок 8 – РЭМ снимки продуктов синтеза для систем $Na_2O-H_2O-(SiO_2-Al_2O_3)_{ctekro}$ (a – ANA-30 (A1); б – ANA-50 (A2)) и $Na_2O-ZrO_2-H_2O-(SiO_2-Al_2O_3)_{ctekro}$ (в – Zr-ANA-30 (A1); Γ – Zr-ANA-50 (A2); д – Zr-ANA-200 (A2); е – Zr-ANA-30 (A2))

В системе Na₂O-ZrO₂-H₂O-(SiO₂-Al₂O₃)_{стекло} формируются отдельные кристаллы анальцима с узким распределением частиц по размеру. Оценка размеров частиц Zr-содержащего анальцима показала, что размер частиц, полученных при разных режимах перемешивания, варьирует от 40 мкм для образца Zr-ANA-30 (A1) до 6–10 мкм для всех образцов, полученных в

режиме 2. При этом анальцим микронных размером характеризуется более дефектной структурой по сравнению с крупнокристаллическим анальцимом.

Методом РСА установлено, что во всех продуктах синтеза (с Zr и без него) анальцим является единственной цеолитной фазой, при этом фазы анальцима, кристаллизующиеся в разных реакционных средах и условиях синтеза, идентичны по своей кристаллической структуре с небольшим отличием в отношении SiO₂/Al₂O₃ и равны 2,31, 2,30 и 2,44, соответственно (таблица 5).

Таблица 5 – Стехиометрический состав и параметры кристаллической решетки фазы анальцима, полученной в различных условиях синтеза

Фаза	ANA-30 (A1)	ANA-50 (A2)	Zr-ANA-30 (A1)	
ΨuJu	анальцим	анальцим	анальцим	
Химическая формула	$Na_{0,986}(Al_{0,986}Si_{2,014}O_6)$ $(H_2O)_{0,977}$	$Na_{0,989}(Al_{0,989}Si_{2,011}O_6)$ $(H_2O)_{0,981}$	$Na_{0,95}(Al_{0,95}Si_{2,05}O_6)$ $(H_2O)_{0,946}$	
Пространственная группа	Ia-3d	Ia-3d	Ia-3d	
Параметры кристаллической решетки, (Å)	13,7319 (4)	13,7332 (1)	13,7219 (4)	
SiO ₂ /Al ₂ O ₃	2,31	2,30	2,44	

По данным РЭМ-ЭДС, кристаллы анальцима размером 40 мкм, полученные в системе с цирконием, содержат включения Zr как в объёме, так и на поверхности (рисунок 9 а, б). На поверхности анальцима микронных размеров также присутствует Zr (рисунок 9 в, г). По данным методов РФА и РФЭС, в объеме цеолитной матрицы Zr находится, скорее всего, в форме аморфного ZrO₂. Примерное содержание Zr в анальциме составляет 5–6 мас. %.

Рисунок 9 – Распределение Zr по сечению кристалла Zr-ANA-30 (A1) (а) и поверхности Zr-ANA-200 (A2) (в); РЭМ-ЭДС локальных участков поверхности (б, г)

Проведена оценка возможности использования композиций ZrO_2 -анальцим микронных размеров в качестве сорбентов Cs^+ , Sr^{2+} и Nd^{3+} . Ожидалось, что присутствие ZrO_2 на поверхности кристаллов анальцима позволит повысить его сорбционную способность в отношении катионов Cs^+ и Sr^{2+} за счет создания дополнительных сорбционных центров. Определены изотермы сорбции катионов Cs^+ , Sr^{2+} и Nd^{3+} при различных pH в сопоставлении с анальцимом, не содержащим цирконий (таблица 6).

Таблица 6 – Параметры уравнения Ленгмюра, значения коэффициента распределения и эффективность процесса сорбции Cs⁺, Sr²⁺ и Nd³⁺ для анальцима и композиций ZrO₂-анальцим

			Параметры уравнения		К _D , мл/г	Е, %
Образец	pН	Катионы	Ленгмюра			
			а _m , мг/г	b, л/мг		
ANA-50 (постоянное		Cs ⁺	24,3	0,03	$0,9 \cdot 10^4$	91,9
перемешивание	6	Sr ²⁺	15,7	0,17	$0,5 \cdot 10^4$	87,9
со скоростью 50 об/мин)		Nd ³⁺	16,4	9,1	$1,0.10^{5}$	99,4
	2	Cs^+	66,5	0,05	$0,5 \cdot 10^4$	86,0
7. ANA 20		Sr^{2+}	374	0,01	$0,4 \cdot 10^4$	82,8
		Nd ³⁺	6,8	0,01	$0,5 \cdot 10^2$	7,7
Переменное	6	Cs ⁺	39,7	0,69	$0,1.10^{6}$	99,2
перемешивание	0	Sr ²⁺	46,5	25,8	$1,3.10^{6}$	99,9
	10	Cs ⁺	36,0	0,48	$0,5 \cdot 10^5$	98,5
	10	Sr ²⁺	36,1	3,9	$2,5 \cdot 10^{6}$	99,9
		Cs ⁺	26,9	0,11	$0,4 \cdot 10^5$	81,8
Zr-ANA-50 (постоянное перемешивание со скоростью 50 об/мин)	2	Sr ²⁺	103	0,06	$0,9.10^{4}$	91,7
		Nd ³⁺	6,0	0,01	$2,0.10^2$	18,9
	6	Cs ⁺	12,9	0,28	$0,9.10^{4}$	99,4
		Sr ²⁺	9,3	4,2	$0,6.10^{5}$	99,6
		Nd ³⁺	32,1	0,77	$2,0.10^{5}$	99,8
	10	Cs ⁺	31,5	0,43	$0,3 \cdot 10^5$	97,2
		Sr ²⁺	36,4	0,75	$3,0.10^{6}$	99,9
		Cs ⁺	33,3	0,13	$0,5 \cdot 10^4$	84,8
	2	Sr ²⁺	235	0,02	$0,4 \cdot 10^4$	84,1
Zr-ANA-200		Nd ³⁺	1,6	0,20	$2,0.10^2$	17,7
(постоянное перемешивание	6	Cs ⁺	9,8	0,35	$0,5 \cdot 10^5$	98,4
		Sr ²⁺	14,2	0,26	$1,0.10^{6}$	99,9
со скоростью 200 об/мин)		Nd ³⁺	20,2	9,35	$1,3.10^{5}$	99,9
	10	Cs ⁺	65,7	0,01	$0,5 \cdot 10^4$	87,5
		Sr^{2+}	123,7	0,18	$1,3.10^{5}$	99,4

Из представленных данных видно, что чистый анальцим, в нейтральной среде проявляет наиболее низкую сорбционную способность в отношении катионов Cs^+ , что обусловлено проявлением ионно-ситового эффекта³. Наблюдаемая незначительная сорбция катионов Cs^+ связана, скорее всего, с участием в сорбции остаточной стеклофазы, выступающей в качестве подложки для анальцима. Данный образец характеризуется также невысокой ёмкостью в отношении Sr^{2+} , сопоставимой с величиной сорбции катионов Cs^+ . Гораздо более эффективно с $K_D \sim 10^5$ мл/г анальцим сорбирует катионы Nd^{3+} , что согласуется с литературными данными⁴.

Среди Zr-содержащих композиций в нейтральной среде лишь для образца Zr-ANA-30 наблюдается значительное повышение сорбционных параметров в отношении Cs⁺ и Sr²⁺ (ёмкость более 40 мг/г, K_D ~10⁶ мл/г), в то время как сорбционная способность композиций Zr-ANA-50 и Zr-ANA-200 не изменилась по сравнению с образцом ANA-50, не содержащим цирконий. Для сорбции катионов Nd³⁺ в нейтральной среде значения сорбционной ёмкости и коэффициента распределения в 1,5–2 раза выше, чем аналогичные показатели для Cs⁺ и Sr²⁺.

По сравнению с нейтральной средой все композиции ZrO_2 -анальцим в кислой среде характеризуются низкими значениями сорбционной ёмкости в отношении катионов Nd^{3+} , порядка 2–6 мг/г, и коэффициента распределения – до $2 \cdot 10^2$ мл/г. В то же время, при сопоставимых сорбционных параметрах в случае сорбции Cs^+ , существенно возрастает сорбционная ёмкость в отношении катионов Sr^{2+} с максимальным значением для образца Zr-ANA-30.

В щелочной среде композиции Zr-ANA-30 и Zr-ANA-50 проявляют близкие сорбционные свойства в отношении Cs⁺ и Sr²⁺ – ёмкость 30–36 мг/г и K_D ~10⁵–10⁶ мл/г. Проведение сорбции в более широком интервале концентраций катионов Cs⁺ и Sr²⁺, продемонстрированное для образца Zr-ANA-200, позволило в 3 раза повысить ёмкость в отношении Sr²⁺ и в 1,5 раза аналогичный показатель для Cs⁺ (таблица 6).

Выбор условий проведения твердофазной кристаллизации полученных композиций проводили на основании результатов синхронного термического анализа. На рисунке 10 приведены ТГ и ДСК кривые для процесса термического превращения образца ZrO_2 -анальцим, насыщенного катионами Cs^+ , Sr^{2+} , Nd^{3+} .

Как следует из приведенных данных, на кривой ДСК наблюдается экзоэффект в интервале 780–980 °C, который отвечает за фазовый переход. Для проведения кристаллизации была выбрана температура 1000 °C. Образцы прокалили при данной температуре в течение 6 часов с медленным подъёмом температуры в течение 4 часов. По данным РФА продукты твердофазного превращения в качестве основной фазы, содержат фазу нефелина, которая может включать цезий и стронций, а также диоксид циркония тетрагональной модификации и стеклофазу (рисунок 11).

³ Брек, Д. Цеолитовые молекулярные сита / Д. Брек.– М.: Мир, 1976.– 606 с.

⁴ Rachkova, N.G. Immobilization of U, Ra, and Th compounds with analcime-containing rock and hydrolysis lignin / N.G. Rachkova, A.I. Taskaev // Radiochemistry.– 2011.– Vol. 53.– № 3.– P. 314–321.

Рисунок 10 – ТГ и ДСК кривые для процесса термического превращения Nd³⁺/Sr²⁺/Cs⁺-форм композиции Zr-ANA-200 (A2)

Рисунок 11 – Дифрактограммы продуктов фазового превращения при 1000 °C Nd³⁺/Sr²⁺/Cs⁺-форм композиции Zr-ANA-200 (A2)

выводы

1. Определены составы реакционных сред и условия синтеза сорбционно-активных композиций различного состава и строения на основе узких фракций ценосфер летучих энергетических зол и Zr-содержащих соединений – циркономолибдатов, цирконосиликатов и диоксида циркония. Получены микросферические композиции со структурой «ядро/оболочка» путем создания на поверхности микросферического носителя тонкослойных покрытий на циркономолибдата, основе мезопористого наноразмерного молиблата циркония $ZrMo_2O_7(OH)_2(H_2O)_2$ И микропористых цирконосиликатов структурных типов илерит $Na_2ZrSi_3O_9·3H_2O$ и гейдоннеит $Na_2ZrSi_3O_9·2H_2O$, а также композитные сорбенты на основе слоистого циркономолибдата со связующим SiO₂ и цеолиты с топологией каркаса типа анальцим, содержащие включения ZrO₂.

2. Для всех композиций в выбранном интервале концентраций Cs⁺, Sr²⁺ и Nd³⁺ (0,5–50 мг/л) экспериментально полученные значения величины сорбции катионов удовлетворительно описываются моделью Ленгмюра с коэффициентом корреляции 0,96–0,99 в соответствии с монослойным характером адсорбции. Композиции характеризуются в процессе сорбции коэффициентами распределения (K_D) ~ 10^3 – 10^6 мл/г, что указывает на перспективность их применения для очистки разбавленных растворов с концентрацией целевых компонентов менее 1 мг/л.

3. Для микросферических композиций на основе мезопористых циркономолибдатов на величину ёмкости в отношении Nd^{3+} оказывает влияние как соотношение Mo/Zr, так и доступность сорбционно-активных групп на поверхности сорбента. Повышение Mo/Zr и диспергирование нанесенного активного компонента обеспечивает достижение величин $K_D \sim 10^4$ мл/г и возрастание удельной сорбционной ёмкости циркономолибдата. Микросферическая

композиция, содержащая в качестве активного компонента наноразмерную фазу $ZrMo_2O_7(OH)_2(H_2O)_2$, характеризуется повышенным сродством к катионам Sr^{2+} и Nd^{3+} ($K_D \sim 10^3$ и $\sim 10^4$ мл/г, соответственно) по сравнению с Cs^+ ($K_D \sim 10^2$ мл/г), а также проявляет в 3 раза более высокую сорбционную ёмкость в отношении катионов Sr^{2+} и Nd^{3+} по сравнению с индивидуальной микроразмерной фазой $ZrMo_2O_7(OH)_2(H_2O)_2$, что связано с увеличением удельной поверхности активного компонента и реализацией механизма сорбции катионов, основанного на ионно-ситовом эффекте.

4. Впервые в мягких гидротермальных условиях осуществлен синтез композиции ZrO_2 анальцим с узким распределением кристаллов по размеру и содержанием циркония около 5,0 мас. %. Атомы Zr не входят в структуру цеолита, а находятся в составе аморфного диоксида циркония, захваченного кристаллами анальцима в процессе их роста, и выполняют функцию дополнительных сорбционных центров. Частицы композиции с наиболее дефектной структурой кристаллов и распределением ZrO_2 по поверхности кристалла демонстрируют наиболее высокие значения K_D (~до 10^6 мл/г) и эффективности извлечения (~99,99 %) в процессе сорбции катионов Cs⁺, Sr²⁺ и Nd³⁺ из нейтральных, кислых и щелочных сред.

5. Определены условия и составы продуктов фазового превращения Nd^{3+} -форм композитных циркономолибдатных сорбентов и $Nd^{3+}/Sr^{2+}/Cs^+$ -обменных форм композиции ZrO_2 -анальцим. Фазовое превращение циркономолибдатных сорбентов с сорбированными катионами Nd^{3+} протекает уже при 650 °C с образованием полифазной системы и включением Nd^{3+} в структуру целевой фазы $Nd_2Zr_3(MoO_4)_9$, содержание которой составляет около 30%. Показано, что при 1000 °C композиции ZrO_2 -анальцим с сорбированными катионами Cs^+ , Sr^{2+} , Nd^{3+} претерпевают твердофазную кристаллизацию с образованием полифазной системы, состоящей из фазы нефелина, способного включать также катионы цезия и стронция, тетрагонального диоксида циркония и стеклофазы.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в изданиях, рекомендованных ВАК РФ:

1. <u>Кутихина, Е.А.</u> Композитные циркономолибдатные сорбенты для иммобилизации катионов f-металлов (III) в минералоподобной матрице / Е.А. Кутихина, Т.А. Верещагина // Журнал Сибирского Федерального Университета. Серия Химия.– 2016.– Т. 9.– № 2.– С. 159–170.

2. <u>Кутихина, Е.А.</u> Микросферические циркономолибдатные сорбенты для извлечения лантаноидов (III) из водных сред / Е.А. Кутихина, Е.В. Мазурова, В.А. Парфенов, Е.В. Фоменко, Т.А. Верещагина // Журнал Сибирского Федерального Университета. Серия Химия.– 2017.– Т. 10.– № 3.– С. 311–324.

3. Vereshchagina, T.A. Synthesis and structure of analcime and analcime-zirconia composite derived from coal fly ash cenospheres / T.A. Vereshchagina, <u>E.A. Kutikhina</u>, L.A. Solovyov, S.N.

Vereshchagin, E.V. Mazurova, Ya.Yu. Chernykh, A.G. Anshits // Microporous and Mesoporous Materials.- 2018.- Vol. 258.- P. 228-235.

4. Vereshchagina, T.A. One-step immobilization of cesium and strontium from alkaline solutions via a facile hydrothermal route / T.A. Vereshchagina, <u>E.A. Kutikhina</u>, Ya.Yu. Chernykh, L.A. Solovyov, A.M. Zhizhaev, S.N. Vereshchagin, A.G. Anshits // Journal of Nuclear Materials.– 2018.– Vol. 510.– P. 243–255.

5. Vereshchagina, T.A. $ZrMo_2O_7(OH)_2(H_2O)_2$ coated microsphere glass supports derived from coal fly ash cenospheres as a novel sorbent for radionuclide trapping / T.A. Vereshchagina, <u>E.A.</u> <u>Kutikhina</u>, E.V. Fomenko, L.A. Solovyov, S.N. Vereshchagin, A.G. Anshits // Journal of Environmental Chemical Engineering.– 2019.– Vol. 7.– P. 102887.

6. Верещагина, Т.А. Получение и свойства Zr-содержащих сорбционно-активных материалов на основе микросфер летучих энергетических зол / Т.А. Верещагина, <u>Е.А. Кутихина</u>, Я.Ю. Черных, Е.В. Фоменко, Е.В. Мазурова, С.Н. Верещагин, Г.Н. Бондаренко // Журнал Сибирского Федерального Университета. Серия Химия.– 2019.– Т. 12.– № 3.– С. 347–363.

7. Vereshchagina, T.A. Cenosphere-sourced hydrothermal synthesis of pollucite-analcime solid solutions as a low-temperature method to immobilize ¹³⁷Cs in a mineral-like form / T.A. Vereshchagina, <u>E.A. Kutikhina</u>, Ya.Yu. Chernykh, L.A. Solovyov, A.M. Zhizhaev, S.N. Vereshchagin, E.V. Fomenko / Journal of Nuclear Materials.– 2020.– Vol. 532.– P. 152073.

Тезисы докладов

8. <u>Кутихина Е.А.</u>, Верещагина Т.А. Композитные циркономолибдатные сорбенты для извлечения катионов f-металлов из жидких радиоактивных отходов и их иммобилизации в минералоподобной форме // Сборник трудов конференции молодых ученых КНЦ СО РАН, секция «Химия». Институт химии и химической технологии СО РАН, 24 марта 2016 г., Красноярск, Россия, 2016.– С. 25–28.

9. <u>Кутихина Е.А.</u>, Верещагина Т.А. Композитные циркономолибдатные сорбенты для извлечения катионов f-металлов из жидких радиоактивных отходов и их иммобилизации в минералоподобной форме // Сборник тезисов XIX Конференция молодых ученых КНЦ СО РАН, 12 апреля 2016 г., Красноярск, Россия, 2016.– С. 17.

10. <u>Кутихина Е.А.</u>, Верещагина Т.А. Микросферические циркономолибдатные сорбенты для извлечения катионов f-металлов из водных сред // Тезисы докладов VII Молодежной школы-конференции ФИЦ КНЦ СО РАН «Наука, промышленность, экология», 24 июля–7 августа 2017 г., Красноярск, Россия, 2017.– С. 24.

11. <u>Кутихина Е.А.</u> Алюмосиликатные микросферы летучих зол – прекурсоры микроисточников радиоактивного излучения для ядерной медицины // Материалы XIX Международной практической конференции студентов и молодых ученых «Химия и химическая технология в XXI веке», 21–24 мая 2018 г., г. Томск, Россия, 2018.– С. 87–89.

12. <u>Кутихина Е.А.</u>, Черных Я.Ю., Верещагина Т.А. Гидротермальный синтез анальцима и композита ZrO₂-анальцим на основе ценосфер летучих зол // Тезисы докладов 8-ой Всероссийской цеолитной конференции «Цеолиты и мезопористые материалы: достижения и перспективы», 18–20 июня 2018 г., г. Уфа, Россия, 2018.– С. 60–61.

13. <u>Кутихина Е.А.</u> Гидротермальный синтез Zr-содержащих сорбентов и минералоподобных матриц на основе микросфер летучих зол // Сборник трудов конференции молодых ученых КНЦ СО РАН, секция «Химия». Институт химии и химической технологии СО РАН, 4 апреля 2019 г, Красноярск, Россия, 2019.– С. 32–36.

14. <u>Кутихина Е.А.</u>, Верещагина Т.А. Гидротермальный синтез каркасных алюмосиликатов на основе микросфер летучих зол как способ иммобилизации ¹³⁷Cs в минералоподобной форме // XXI Менделеевский съезд по общей и прикладной химии, 9–13 сентября 2019 г., г. Санкт-Петербург, 2019.– С. 279.

15. <u>Кутихина Е.А.</u>, Верещагина Т.А. Получение и свойства композитных Zr-содержащих сорбентов на основе ценосфер летучих зол // XXI Менделеевский съезд по общей и прикладной химии, 9–13 сентября 2019 г., г. Санкт-Петербург, Россия, 2019.– С. 280.

16. <u>Кутихина Е.А</u>., Верещагина Т.А. Сорбционные свойства микросферических Zrсодержащих сорбентов в отношении катионов Cs⁺ и Sr²⁺ // Сборник тезисов V Всероссийской молодежной конференции «Достижения молодых ученых: Химические науки», 20–23 мая 2020 г., г. Уфа, Россия, 2020.– С. 25–29.

17. <u>Kutikhina E.A.</u>, Vereshchagina T.A., Anshits A.G. Hydrothermal processing of ¹³⁷Cs/⁹⁰Sr bearing alkaline radioactive waste sourced with coal fly ash cenospheres // Сборник тезисов Международной конференции «Энергетика XXI века: устойчивое развитие и интеллектуальное управление / ENERGY-21: Sustainable Development & Smart Management», 7–11 сентября 2020 г., г. Иркутск, Россия, 2020.– С. 51–52.

Автор выражает искреннюю благодарность научному руководителю Верещагиной Татьяне Александровне и заведующему лабораторией каталитических превращений малых молекул, профессору, д.х.н. Аншицу Александру Георгиевичу за внимание и ценные замечания к работе, Фоменко Елене Викторовне за предоставление узких фракций ценосфер летучих зол, а также коллегам указанной лаборатории и лаборатории молекулярной спектроскопии и анализа ИХХТ СО РАН за проведение совместных исследований и обсуждение результатов работы.

Кутихина Екатерина Анатольевна

Композитные сорбенты на основе ценосфер энергетических зол: синтез, строение и сорбционные свойства в отношении Cs^+ , Sr^{2+} и Nd^{3+}

Автореферат диссертации на соискание ученой степени кандидата химических наук.

Подписано в печать 16.02.2021. Заказ № 2 Формат 60х84/16. Усл. печ. л. 1.4. Тираж 100 экз.

Отпечатано в типографии И.П. Дворядкина И.Д. 660036, г. Красноярск, Академгородок, 50, стр. 28, оф. 156 тел. 290-72-32, 8-963-180-99-76 e-mail: darma@akadem.ru